Toward a reanalysis of MLS Stratospheric Chemical Observations Q. Errera¹ (quentin@oma.be), G. Braathen², Y. Christophe¹, S. Chabrillat¹ and S. Skachko¹ ### 1. Motivations - BASCOE system provides operational analysis of the stratospheric chemical composition since 2009 using MLS scientific retrievals with a latency of 3-5 days (www.copernicus-stratosphere.eu) - These analyses are used by WMO Global Atmosphere Watch (GAW) to produce the Arctic and Antarctic Ozone Bulletin - BASCOE analyses are provided as 6-hourly snapshot and are: - easier to interpret the global state of the stratosphere than MLS profiles - more accurate than free model output - A reanalysis of MLS between 2004-present will allow GAW to evaluate more easily the evolution of the polar stratosphere since 2004 Figure 1: Illustration of use of BASCOE analyses of MLS for the production of the WMO GAW Antarctic Ozone Bulletin. Here is shown the cover page of the 1st bulletin of 2014. # 2. Experimental setup All numerical experiments descibed here have been done with the Belgian Assimilation System for Chemical Observations (BASCOE; Errera et al., ACP, 2008; Skachko et al., GMD, 2016) - Chemitry Transport Model: - 58 stratospheric species advected by the Flux Form Semi Lagrangian (Lin and Rood, MWR, 1996) - ~200 chemical reactions (gas-phase, photolysis and heterogeneous) - PSC Parameterization of their formation/evaporation, sedimentation and heterogeneous reactions rates on their surface (see box 4) - Resolution: 2.5°lat x 3.75°lon x 37 levels between 0.1 hPa surface - Time step: 30' - Dynamical fields: ERA-Interim - Data Assimilation: - Method: 4D-Var (Errera et al., ACP, 2008, 2012) or EnKF (Skachko et al., GMD, 2014, 2016). See box 5 - 4D-Var ${\bf B}$ matrix assume homogeneous and isotropic spatial Gaussian correlations with length scales L_h =800 km and L_v =1 vertical level - Observations: Aura MLS v4.2 profiles of O₃, H₂O, HNO₃, N₂O, HCl, ClO and CO according to the Data Quality Document recommendations - Period of interest: April-November 2008 # 3. New H₂O setup at the UTLS - Old setup used ERA-Interim between surface-2 km above tropopause - BASCOE CTM includes a new setup to account for H₂O condensation which leads to a better agreement with MLS (CTM and DA) Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium ²WMO, Geneva, Switzerland ### 4. South Polar Winter Model simulations Four Chemitry Transport Model (CTM) simulations: CTM 1: PSC existance as a function of T°. PSC sedimentation assume exponential decay (Errera et al., ACP, 2008): VMR_{HNO3}=VMR_{HNO3}*EXP(-9days* Δt) If T<186K: $VMR_{H2O} = VMR_{H2O} * EXP(-9 days * \Delta t)$ ICE exist with SAD=106 cm2/cm3 Else If T<194K: VMR_{HNO3}=VMR_{HNO3}*EXP(-100days* Δt) NAT exist with SAD=107 cm2/cm3 CTM 2: PSC existance as a function of condensation pressure. PSC sedimentation assume exponential decay (Huijnen et al., GMD, 2016, in press): $VMR_{HNO3}=VMR_{HNO3}*EXP(-9days* \Delta t)$ If $p_{H2O} > p_{ICE}$: $VMR_{H2O} = VMR_{H2O} * EXP(-9 days * \Delta t)$ ICE exist with SAD=106 cm2/cm3 Else If p_{HNO3}>p_{NAT}: VMR_{HNO3}=VMR_{HNO3}*EXP(-20days* Δt) NAT exist with SAD=10⁷ cm²/cm³ - CTM 3: REPROBUS PSC parameterization (Lefèvre et al., JGR, 1994) - CTM 4: As CTM 3 where NAT formation is slowed down # 5. South Polar Winter Data Assimilation Experiments Four DA simulations: - DA 1a: 4D-Var with PSC setup as in CTM 1 - DA 1b: EnKF with PSC setup as in CTM 1 - DA 2: 4D-Var with PSC setup as in CTM 2 - DA 3: 4D-Var with PSC setup as in CTM 4 #### 6. Conclusions - None of PSC parameterizations used in CTM or DA agree completely with - Complex PSC parameterization (e.g. Reprobus) are not necessarily better than simple one - EnKF seems to perform better than 4D-Var - Work in progress